完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 鄭哲睿 | |
dc.contributor.author | 朱天婕 | |
dc.contributor.author | 林翰博 | |
dc.contributor.author | 薛藝湛 | |
dc.contributor.author | 周佳玉 | |
dc.contributor.author | Zheng, Zhe-Rui | |
dc.contributor.author | Zhu, Tian-Jie | |
dc.contributor.author | Lin, Han-Bo | |
dc.contributor.author | Xue, Yi-Zhan | |
dc.contributor.author | Zhou, Jia-Yu | |
dc.date | 106學年度第一學期 | |
dc.date.accessioned | 2018-04-27T08:39:33Z | |
dc.date.accessioned | 2020-07-30T07:37:41Z | - |
dc.date.available | 2018-04-27T08:39:33Z | |
dc.date.available | 2020-07-30T07:37:41Z | - |
dc.date.issued | 2018-04-27T08:39:33Z | |
dc.date.submitted | 2018-04-27 | |
dc.identifier.other | D0571987、D0571926、D0571960、D0571930、D0572026 | |
dc.identifier.uri | http://dspace.fcu.edu.tw/handle/2377/31793 | - |
dc.description.abstract | Abstract It is of great interest to identify the factors that influence the salaries of National Basketball Association (NBA) players. This study examines the 2017-2018 wages of 100 NBA players which are randomly selected by the SAS software based on their career performance variables using a multiple linear regression. There are 28 explanatory variables which include age, 3-point field goals per game and free throws per game. The multiple regression analysis is conducted to determine the explanatory variables which are helpful in predicting the salaries of NBA players. Five methods for model selection are used, these include forward selection, backward elimination, stepwise selection, adjusted R-square selection method and C(p) method. All five methods demonstrated similar results. Results indicated that variables such as games started, field goals per game, total rebounds per game, personal fouls per game, also the terms of contract used, have a significant correlation with salary. | |
dc.description.tableofcontents | Table of Content I. Introduction 5 II. Method 6 i. Data Description 6 ii. Scatter Plot and Basic Statistics 7 iii. Variable Explanation 9 iv. Variable Selection 11 v. Model Representation 14 III. Model Analysis 16 i. Outliers Analysis 16 ii. Influential Point Analysis 16 iii. Four Assumption Verification 18 III. Findings and Discussion 21 IV. Appendix 22 i. Data Resources 22 ii. References 22 iii. Outlier and Influential Point Analysis 22 iv. Scatter Plot 24 | |
dc.format.extent | 29p. | |
dc.language.iso | en | |
dc.rights | openbrowse | |
dc.subject | National Basketball Association | |
dc.subject | Multiple Linear Regression | |
dc.subject | Model Selection | |
dc.subject | Multicollinearity | |
dc.subject | Influential Point | |
dc.subject | Outliers | |
dc.title | What Are the Important Factors for NBA Player Salaries in 2017? | |
dc.type | UndergraReport | |
dc.description.course | 數據分析 | |
dc.contributor.department | 商學大數據分析雙學士學位學程, 國際科技與管理學院 | |
dc.description.instructor | 陳婉淑 | |
dc.description.programme | 商學大數據分析雙學士學位學程, 國際科技與管理學院 | |
分類: | 國106學年度 |
文件中的檔案:
檔案 | 描述 | 大小 | 格式 | |
---|---|---|---|---|
D0571987106158.pdf | 3.23 MB | Adobe PDF | 檢視/開啟 |
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。