完整後設資料紀錄
DC 欄位語言
dc.contributor.author周久閔
dc.contributor.author劉政鋒
dc.date108學年度第一學期
dc.date.accessioned2020-05-07T06:17:54Z
dc.date.accessioned2021-09-23T06:44:31Z-
dc.date.available2020-05-07T06:17:54Z
dc.date.available2021-09-23T06:44:31Z-
dc.date.issued2020-05-07T06:17:54Z
dc.date.submitted2020-05-07
dc.identifier.otherM0805511, M0706329
dc.identifier.urihttp://dspace.fcu.edu.tw/handle/2377/31973-
dc.description.abstract本報告採用兩個股票市場指數Russell 2000和Swiss Market Index來評估兩市場的風險及表現。首先,我們使用R套件``quantmod''從Yahoo Finance中截取日報酬率,我們應用六個風險模型來對模型參數推論,並預測波動率和風險值。 以下用英文縮寫:RiskMetrics、GARCH、GARCH in Mean、IGARCH、GJR-GARCH、EGARCH。最後兩個模型為不對稱異質模型。 我們也考慮了四個誤差機率分佈,其中包括:常態分佈,Student’s t分佈,skew Student’s t分佈,廣義誤差(GED)分佈,樣本內資料期間是從2000年1月4日到2018年8月30月,並且使用滾動窗口的方法來進行一步的預測,要預測的樣本外期間為2018年9月1日至2019年12月25日,我們評估所有的風險模型是否其違反率接近顯著水準。檢定方法我們使用兩種回溯測試方法(無條件涵蓋檢定法和有條件涵蓋檢定法)個別用於1%和5%的水準做決策;最後的分析結果顯示,帶有偏態的Student’s error的EGARCH模型在1%水準下是兩個股票市場中的最佳模型,依據分析結果可以得知,帶有偏態的Student’s error可以很好的解釋資料中有偏態和厚尾的特徵。
dc.description.abstractThis report evaluates risk performance based on two stock market indexes, Russell 2000 and Swiss Market Index. We use the R package ``quantmod'' to extract daily returns from Yahoo Finance. We employ six risk models to make inference model parameters and forecast volatility and Value-at-Risk. There are RiskMetrics, GARCH model, GARCH in Mean, integrated GARCH, GJR-GARCH, and exponential GARCH models. The last two models are known as the asymmetric heteroscedastic models. Four error probability distributions are considered, included Normal, Student’s t, skew Student’s t and generalized error distributions. We consider an in-sample period from January 4, 2000 to August 30, 2018. We focus on one-step-ahead forecasts based on a rolling window approach. The out-of-sample period covers from September 1, 2018 to December 25, 2019. We provide violation rates for all risk models, which should be close to the nominal level . Two backtests, the unconditional coverage test and the conditional coverage test, are used for both 1% and 5% levels. The analysis results show that EGARCH with skew Student’s error is the best model in both stock markets at the 1% level. This EGARCH with skew Student’s error can well explain the characteristics of skewness and thick tail.
dc.description.tableofcontents1 介紹5 2 研究方法6 3 數據分析11 4 結論22
dc.format.extent23p.
dc.language.isozh
dc.rightsopenbrowse
dc.subjectquantmod
dc.subjectRussell 2000
dc.subjectSwiss Market Index
dc.subjectGARCH
dc.subject違反率
dc.subject回溯測試
dc.subjectviolation rates
dc.subjectbacktest
dc.title樣本外預測評估金融風險模型
dc.title.alternativeOut-of-sample forecasting on financial risk models
dc.typegradreport
dc.description.course時間數列分析
dc.contributor.department統計學系統計與精算碩士班, 商學院
dc.description.instructor陳婉淑
dc.description.programme統計學系統計與精算碩士班, 商學院
分類:商108學年度

文件中的檔案:
檔案 描述 大小格式 
M0805511108121.pdf908.46 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。