完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 王景弘 | |
dc.contributor.author | 洪宗貝 | |
dc.contributor.author | 曾憲雄 | |
dc.date.accessioned | 2009-08-23T04:44:39Z | |
dc.date.accessioned | 2020-08-06T07:15:34Z | - |
dc.date.available | 2009-08-23T04:44:39Z | |
dc.date.available | 2020-08-06T07:15:34Z | - |
dc.date.issued | 2007-01-13T07:15:38Z | |
dc.date.submitted | 1995-12-21 | |
dc.identifier.uri | http://dspace.fcu.edu.tw/handle/2377/3401 | - |
dc.description.abstract | In this paper, we have attempted to apply the concept of fuzzy sets to machine learning. We assume, first, that the classification into positive and negative examples in the training set is a degree of positiveness and negativeness between 0 and 1;second, that an inexact matching between a concept description and an example is allowed; and third, that data may contain wrong, uncertain, and linguistic information. A new inductive learning problem is then formulated so as to induce a concept description that covers almost all of positive examples and almost none of negative ones. Therefore, a fuzzy learning algorithm by the version-space strategy is proposed to manage wrong, uncertain, and linguistic information under imprecision and noise environments | |
dc.description.sponsorship | 元智工學院,中壢市 | |
dc.format.extent | 8p. | |
dc.format.extent | 573314 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | zh_TW | |
dc.relation.ispartofseries | 1995 NCS會議 | |
dc.subject | version space | |
dc.subject | fuzzy version space | |
dc.subject | inductive learning | |
dc.subject | classification | |
dc.subject | 樣本空間 | |
dc.subject | 模糊樣本空間 | |
dc.subject | 歸納學習 | |
dc.subject | 分類 | |
dc.subject.other | Neural Networks | |
dc.subject.other | Fuzzy Logic | |
dc.title | 應用歸納學習策略由數值資料產生模糊規則 | |
dc.title.alternative | Generating Fuzzy Rules From Numerical Data By Inductive Learning Strategy | |
分類: | 1995年 NCS 全國計算機會議 |
文件中的檔案:
檔案 | 描述 | 大小 | 格式 | |
---|---|---|---|---|
ce07ncs001995000080.pdf | 559.88 kB | Adobe PDF | 檢視/開啟 |
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。