完整後設資料紀錄
DC 欄位語言
dc.contributor.author王景弘
dc.contributor.author洪宗貝
dc.contributor.author曾憲雄
dc.date.accessioned2009-08-23T04:44:39Z
dc.date.accessioned2020-08-06T07:15:34Z-
dc.date.available2009-08-23T04:44:39Z
dc.date.available2020-08-06T07:15:34Z-
dc.date.issued2007-01-13T07:15:38Z
dc.date.submitted1995-12-21
dc.identifier.urihttp://dspace.fcu.edu.tw/handle/2377/3401-
dc.description.abstractIn this paper, we have attempted to apply the concept of fuzzy sets to machine learning. We assume, first, that the classification into positive and negative examples in the training set is a degree of positiveness and negativeness between 0 and 1;second, that an inexact matching between a concept description and an example is allowed; and third, that data may contain wrong, uncertain, and linguistic information. A new inductive learning problem is then formulated so as to induce a concept description that covers almost all of positive examples and almost none of negative ones. Therefore, a fuzzy learning algorithm by the version-space strategy is proposed to manage wrong, uncertain, and linguistic information under imprecision and noise environments
dc.description.sponsorship元智工學院,中壢市
dc.format.extent8p.
dc.format.extent573314 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries1995 NCS會議
dc.subjectversion space
dc.subjectfuzzy version space
dc.subjectinductive learning
dc.subjectclassification
dc.subject樣本空間
dc.subject模糊樣本空間
dc.subject歸納學習
dc.subject分類
dc.subject.otherNeural Networks
dc.subject.otherFuzzy Logic
dc.title應用歸納學習策略由數值資料產生模糊規則
dc.title.alternativeGenerating Fuzzy Rules From Numerical Data By Inductive Learning Strategy
分類:1995年 NCS 全國計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ncs001995000080.pdf559.88 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。