完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chen, Yen-Ju | |
dc.contributor.author | Tang, Shyue-Ming | |
dc.contributor.author | Wan, Yue-Li | |
dc.date.accessioned | 2009-08-23T04:43:06Z | |
dc.date.accessioned | 2020-05-25T06:51:32Z | - |
dc.date.available | 2009-08-23T04:43:06Z | |
dc.date.available | 2020-05-25T06:51:32Z | - |
dc.date.issued | 2007-01-26T01:44:40Z | |
dc.date.submitted | 2006-12-04 | |
dc.identifier.uri | http://dspace.lib.fcu.edu.tw/handle/2377/3487 | - |
dc.description.abstract | An incidence of G consists of a vertex and one of its incident edge in G. The incidence coloring problem is a variation of vertex coloring problem. The problem is to find the minimum number (called incidence coloring number) of colors needed to dye every incidence of G so that the adjacent incidences do not dye the same color. A graph G is called a chordal (or triangulated) graph if and only if there is no induced cycle of length greater than 3 in G. In this paper, we propose a linear time algorithm for incidence-coloring a chordal graph. Further, we prove that the incidence coloring number of a chordal graph is Δ(G)+1, where Δ(G) is the maximum degree of G. | |
dc.description.sponsorship | 元智大學,中壢市 | |
dc.format.extent | 4p. | |
dc.format.extent | 3782294 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | zh_TW | |
dc.relation.ispartofseries | 2006 ICS會議 | |
dc.subject | chordal graphs | |
dc.subject | perfect elimination ordering | |
dc.subject | incidence coloring problem | |
dc.subject.other | Memory Hierarchy System Design | |
dc.title | A Linear Time Algorithm for Solving the Incidence Coloring Problem of Chordal Graphs | |
分類: | 2006年 ICS 國際計算機會議 |
文件中的檔案:
檔案 | 描述 | 大小 | 格式 | |
---|---|---|---|---|
ce07ics002006000037.pdf | 3.69 MB | Adobe PDF | 檢視/開啟 |
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。