完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang Chia-Hui, Chia-Hui
dc.contributor.authorHo, Cheng-Tao
dc.date.accessioned2009-08-23T04:43:28Z
dc.date.accessioned2020-05-25T06:52:44Z-
dc.date.available2009-08-23T04:43:28Z
dc.date.available2020-05-25T06:52:44Z-
dc.date.issued2007-01-26T02:30:42Z
dc.date.submitted2006-12-04
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/3507-
dc.description.abstractGraph mining has wide applications in chemistry, biology and computer networks. This kind of structure pattern mining might encounter more duplication cases due to graph isomorphism. Pattern growth approach has been shown to perform well for unstructured pattern mining, such as itemset and sequential patterns. In this paper, we shall examine whether such approach can also works for structured pattern mining. We propose a graph mining algorithm which enumerates frequent patterns by combining known frequent patterns with local frequent edges discovered via embedding lists. The embedding list technique not only facilitates the discovery of local frequent edges but also averts subgraph isomorphism checking. The empirical study on synthetic and real datasets demonstrates that HybridGMiner outperforms the algorithm gSpan but seconds to Gaston.
dc.description.sponsorship元智大學,中壢市
dc.format.extent6p.
dc.format.extent4019619 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries2006 ICS會議
dc.subject.otherData Mining Algorithms and Methods
dc.titleA Pattern Growth Approach for Frequent Subgraph Mining
分類:2006年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002006000055.pdf3.93 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。