完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTseng, Vincent S.
dc.contributor.authorChu, Chun-Jung
dc.contributor.authorLiang, Tyne
dc.date.accessioned2009-08-23T04:43:14Z
dc.date.accessioned2020-05-25T06:51:51Z-
dc.date.available2009-08-23T04:43:14Z
dc.date.available2020-05-25T06:51:51Z-
dc.date.issued2007-01-26T02:32:09Z
dc.date.submitted2006-12-04
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/3508-
dc.description.abstractIn this paper, we propose a new method, namely EFI (Emerging Frequent Itemset)-Mine, for mining temporal emerging frequent itemsets from data streams efficiently and effectively. Discovery of emerging frequent itemsets is an important process for mining interesting patterns from data streams. The novel contribution of EFI-Mine is that it can effectively identify the potential emerging itemsets such that the execution time can be reduced substantially in mining all frequent itemsets in data streams. This meets the critical requirements of time and space efficiency for mining data streams. The experimental results show that EFI-Mine can find the emerging frequent itemsets with high precision under different experimental conditions and it performs scalable in terms of execution time.
dc.description.sponsorship元智大學,中壢市
dc.format.extent6p.
dc.format.extent3826885 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries2006 ICS會議
dc.subject.otherData Mining Algorithms and Methods
dc.titleAn Efficient Method for Mining Temporal Emerging Itemsets in Data Streams
分類:2006年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002006000056.pdf3.74 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。