完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, Jieh-Ren
dc.contributor.authorWang, Nai-Jian
dc.date.accessioned2009-08-23T04:43:03Z
dc.date.accessioned2020-05-25T06:51:27Z-
dc.date.available2009-08-23T04:43:03Z
dc.date.available2020-05-25T06:51:27Z-
dc.date.issued2007-01-26T02:34:32Z
dc.date.submitted2006-12-04
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/3510-
dc.description.abstractTo easily construct an efficient rule-based system for pattern classification problem is an important research topic. In this paper, we use a simple method to build up the fuzzy rules directly from numerical input-output data. First, we extract fuzzy rules from different class regions which are confined by training data. These confined regions construct the basic element-nodes in the second layer for our proposed neural network structure. When these confined regions are overlapped, a recursive process is applied possibly to set up additive fuzzy rules in these uncertainty-overlap regions. The stop criterion is referred in a measure of fuzziness to keep creating the efficient rules for the recursive process. All additive fuzzy rules are added into this fuzzy-neural network. Finally, the method is compared with other algorithms using the Fisher iris data and a set of pseudo iris data for performance evaluation.
dc.description.sponsorship元智大學,中壢市
dc.format.extent6p.
dc.format.extent3785286 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries2006 ICS會議
dc.subject.otherData Mining Algorithms and Methods
dc.titleA Simple Method to Extract Fuzzy Rules by Measure of Fuzziness
分類:2006年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002006000058.pdf3.7 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。