完整後設資料紀錄
DC 欄位語言
dc.contributor.authorYen, Shwu-Huey
dc.contributor.authorTsai, Chin-Wei
dc.contributor.authorLi, Tai-Kuang
dc.date.accessioned2009-08-23T04:42:51Z
dc.date.accessioned2020-05-25T06:54:40Z-
dc.date.available2009-08-23T04:42:51Z
dc.date.available2020-05-25T06:54:40Z-
dc.date.issued2007-01-31T05:44:41Z
dc.date.submitted2006-12-04
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/3638-
dc.description.abstractMachine learning is a state-of-the-art scheme in solving many kinds of complicated problems. This paper utilizes two types of machine learning algorithms to detect skin and face/pose respectively. Initially a hierarchical neural network is applied for skin detection. Begin with a neural network to overcome the diversity of light and follow by a second neural network to get over colors near the skin color. After the skin area is detected, an AdaBoost learning algorithm is implemented for face/pose detection. Haar-like features [11][12] are utilized as features of modified Adaboost to determine whether there is a left, frontal, right, or non-face in a 20 x 20 sliding window. Experimental results show that the proposed method achieves a good performance in skin color detection, capacity of coping with the problems of scaling, rotation and multiple faces, as well as a good detection rate.
dc.description.sponsorship元智大學,中壢市
dc.format.extent5p.
dc.format.extent709885 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries2006 ICS會議
dc.subject.otherFace Detection and Recognition
dc.titleEfficient Face/Pose Detection Based on Machine Learning
分類:2006年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002006000182.pdf693.25 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。