完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWang, Shulin
dc.contributor.authorChen, Huowang
dc.contributor.authorLi, Renfa
dc.contributor.authorZhang, Dingxing
dc.date.accessioned2009-08-23T04:42:37Z
dc.date.accessioned2020-05-25T06:53:14Z-
dc.date.available2009-08-23T04:42:37Z
dc.date.available2020-05-25T06:53:14Z-
dc.date.issued2007-02-06T02:19:39Z
dc.date.submitted2006-12-04
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/3704-
dc.description.abstractThe development of microarray technology has motivated interest of its use in clinical diagnosis of tumor and drug discovery. However the accurate classification of tumor by selecting the tumor-related genes from thousands of genes is a difficulty task due to the large number of redundant genes. Therefore, we propose a novel hybrid approach which combines rough set theory with support vector machines to further improve the classification performance of gene expression data. Our approach is assessed on two well-known tumor datasets, and experiments indicate that gene selection based on the rough set theory is effective because most of the selected genes are relevant to tumor using rough set attribute reduction, and support vector machines classifier has a better performance on the selected informative genes.
dc.description.sponsorship元智大學,中壢市
dc.format.extent6p.
dc.format.extent489770 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries2006 ICS會議
dc.subjectDNA microarry
dc.subjectRough set theory
dc.subjectGene expression profiles
dc.subjectSupport vector machines
dc.subjectGene selection
dc.subject.otherData Mining
dc.titleGene Selection with Rough Sets for the Molecular Diagnosing of Tumor Based on Support Vector Machines
分類:2006年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002006000232.pdf478.29 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。