完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chen, Rung-Ching | |
dc.contributor.author | Chuang, Cheng-Han | |
dc.contributor.author | Tseng, Chiu-Che | |
dc.date.accessioned | 2009-08-23T04:42:46Z | |
dc.date.accessioned | 2020-05-25T06:54:03Z | - |
dc.date.available | 2009-08-23T04:42:46Z | |
dc.date.available | 2020-05-25T06:54:03Z | - |
dc.date.issued | 2007-02-06T06:12:51Z | |
dc.date.submitted | 2006-12-04 | |
dc.identifier.uri | http://dspace.lib.fcu.edu.tw/handle/2377/3726 | - |
dc.description.abstract | Ontology is playing an important role in Semantic Web, biomedical informatics and knowledge management. At the same time, constructing and maintaining ontology has become challenges in efficiency and accuracy. In this study, we present a novel ontology construction based on artificial neural network and Bayesian network. First, we collected the web pages related to the problem domain. Then utilize the labels from the HTML tags to selected keywords and utilize WordNet to determine the meaningful keywords called terms. Next, calculate Entropy value to determine the weight of terms. After above steps, using a projective adaptive resonance theory neural network(PART) clusters the terms. Finally, the system outputs an ontology using Bayesian network to express the hierarchical relation among the keywords. | |
dc.description.sponsorship | 元智大學,中壢市 | |
dc.format.extent | 6p. | |
dc.format.extent | 569231 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | zh_TW | |
dc.relation.ispartofseries | 2006 ICS會議 | |
dc.subject | PART | |
dc.subject | Bayesian network | |
dc.subject | WordNet | |
dc.subject | Ontology | |
dc.subject | Entropy | |
dc.subject.other | The development of e-ldarning environment | |
dc.title | Constructing an Ontology Automatically by Projective ART Neural Network | |
分類: | 2006年 ICS 國際計算機會議 |
文件中的檔案:
檔案 | 描述 | 大小 | 格式 | |
---|---|---|---|---|
ce07ics002006000252.pdf | 555.89 kB | Adobe PDF | 檢視/開啟 |
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。