完整後設資料紀錄
DC 欄位語言
dc.contributor.authorSun, Koun-Tem
dc.contributor.authorLin, Yi-Chun
dc.contributor.authorHuang, Yueh-Min
dc.date.accessioned2009-08-23T04:43:05Z
dc.date.accessioned2020-05-25T06:51:32Z-
dc.date.available2009-08-23T04:43:05Z
dc.date.available2020-05-25T06:51:32Z-
dc.date.issued2007-02-06T06:16:36Z
dc.date.submitted2006-12-04
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/3728-
dc.description.abstractGenetic algorithm has achieved remarkable results in solving the problem of combinatorial optimization in the artificial intelligence area in recent years. However, efficient search for one reasonable best solution is still underway among the massive restricted conditions. This paper proposes an efficient genetic algorithm based on Item Response Theory (IRT) and enables effective search for optimal solution or near optimal solution under restricted conditions. By modify the evolutionary parameters and the goal function of the simple genetic algorithm, test quality is not only acceptable by test designers, but the practicability is also enhanced. The proposed method is a more effective tool for education assessment researcher as it successfully extends artificial intelligence-genetic algorithm applied in the educational assessment.
dc.description.sponsorship元智大學,中壢市
dc.format.extent6p.
dc.format.extent550678 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries2006 ICS會議
dc.subject.otherThe development of e-ldarning environment
dc.titleAn efficient genetic algorithm for item selection strategy
分類:2006年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002006000254.pdf537.77 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。