完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Feng-Long
dc.contributor.authorLin, Yih-Jeng
dc.date.accessioned2009-06-02T06:40:20Z
dc.date.accessioned2020-05-25T06:42:05Z-
dc.date.available2009-06-02T06:40:20Z
dc.date.available2020-05-25T06:42:05Z-
dc.date.issued2006-10-11T08:05:06Z
dc.date.submitted2004-12-15
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/1033-
dc.description.abstractWe study the improvement for the well-known Good-Turing smoothing and a novel idea of probability redistribution for unseen events is proposed. The smoothing method is used to resolve the zero count problem in traditional language models. The cut-off value co for number of count is used to improve the Good- Turing Smoothing. The best k on various training data N are analyzed. Basically, there are two processes for smoothing techniques: 1)discounting and 2)redistributing. Instead of uniform assignment of probability used by several well-known methods for each unseen event we propose new concept of improvement for redistribution of smoothing method. Based on the probabilistic behavior of seen events, the redistribution process is non-uniform. The empirical results are demonstrated and analyzed for two improvements. The improvements discussed in the paper are apparent and effective for smoothing methods, especially on higher unseen event rate.
dc.description.sponsorship大同大學,台北市
dc.format.extent6p.
dc.format.extent261397 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries2004 ICS會議
dc.subjectLanguage model
dc.subjectSmoothing method
dc.subjectGood-Turing
dc.subjectCross entropy
dc.subjectRedistribution
dc.subject.otherArtificial Intelligence
dc.titleImprovements of Smoothing Methods for Language Models
分類:2004年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002004000091.pdf255.27 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。