完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chang, Bao-Rong | |
dc.date.accessioned | 2009-06-02T06:39:57Z | |
dc.date.accessioned | 2020-05-25T06:41:36Z | - |
dc.date.available | 2009-06-02T06:39:57Z | |
dc.date.available | 2020-05-25T06:41:36Z | - |
dc.date.issued | 2006-10-11T08:09:27Z | |
dc.date.submitted | 2004-12-15 | |
dc.identifier.uri | http://dspace.lib.fcu.edu.tw/handle/2377/1050 | - |
dc.description.abstract | A novel scheme for training support vector regression (SVR) with self-adaptive mechanism, called adaptive SVR (ASVR), is introduced herein to tune automatically user-defined free parameters, C and ε-tube, optimally in SVR. In the traditional support vector regression, two free parameters, C and ε -tube, are set in the default values, infinite and zero, respectively. However, this default setting is not optimal one for any SVR forecasting applications, and thus it may encounter some big residual errors leading to worst prediction accuracy. In order to best fit SVR model, adaptive support vector regression is applied to tuning free parameters C and ε-tube optimally. In such this way, the generalization capability can be enhanced in SVR model so as to improve prediction accuracy highly. | |
dc.description.sponsorship | 大同大學,台北市 | |
dc.format.extent | 7p. | |
dc.format.extent | 534051 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | zh_TW | |
dc.relation.ispartofseries | 2004 ICS會議 | |
dc.subject | support vector regression | |
dc.subject | adaptive support vector regression | |
dc.subject | generalization capability | |
dc.subject.other | Artificial Intelligence | |
dc.title | Adaptive Support Vector Regression | |
分類: | 2004年 ICS 國際計算機會議 |
文件中的檔案:
檔案 | 描述 | 大小 | 格式 | |
---|---|---|---|---|
ce07ics002004000155.pdf | 521.53 kB | Adobe PDF | 檢視/開啟 |
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。