完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, Bao-Rong
dc.date.accessioned2009-06-02T06:39:57Z
dc.date.accessioned2020-05-25T06:41:36Z-
dc.date.available2009-06-02T06:39:57Z
dc.date.available2020-05-25T06:41:36Z-
dc.date.issued2006-10-11T08:09:27Z
dc.date.submitted2004-12-15
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/1050-
dc.description.abstractA novel scheme for training support vector regression (SVR) with self-adaptive mechanism, called adaptive SVR (ASVR), is introduced herein to tune automatically user-defined free parameters, C and ε-tube, optimally in SVR. In the traditional support vector regression, two free parameters, C and ε -tube, are set in the default values, infinite and zero, respectively. However, this default setting is not optimal one for any SVR forecasting applications, and thus it may encounter some big residual errors leading to worst prediction accuracy. In order to best fit SVR model, adaptive support vector regression is applied to tuning free parameters C and ε-tube optimally. In such this way, the generalization capability can be enhanced in SVR model so as to improve prediction accuracy highly.
dc.description.sponsorship大同大學,台北市
dc.format.extent7p.
dc.format.extent534051 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries2004 ICS會議
dc.subjectsupport vector regression
dc.subjectadaptive support vector regression
dc.subjectgeneralization capability
dc.subject.otherArtificial Intelligence
dc.titleAdaptive Support Vector Regression
分類:2004年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002004000155.pdf521.53 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。