完整後設資料紀錄
DC 欄位語言
dc.contributor.authorShih, Yuan-Kang
dc.contributor.authorLin, Cheng-Kuan
dc.contributor.authorTan, Jimmy J. M.
dc.date.accessioned2009-08-23T04:50:41Z
dc.date.accessioned2020-05-29T06:39:37Z-
dc.date.available2009-08-23T04:50:41Z
dc.date.available2020-05-29T06:39:37Z-
dc.date.issued2008-07-22T07:28:57Z
dc.date.submitted2007-12-20
dc.identifier.urihttp://dspace.fcu.edu.tw/handle/2377/10767-
dc.description.abstractA bipartite graph is bipancyclic if it contains a cycle of every even length from 4 to jV (G)j inclusive. A hamiltonian bipartite graph G is bipanpositionable if, for any two di®erent vertices x and y, there exists a hamiltonian cycle C of G such that dC(x; y) = k for any integer k with dG(x; y)≦ k ≦ jV (G)j=2 and (k ¡ dG(x; y)) being even. A bipartite graph G is k-cycle bipanpositionable if, for any two di®erent vertices x and y, there exists a cycle of G with dC(x; y) = l and jV (C)j = k and for any integer l with dG(x; y)≦l ≦ k/ 2 and (l ¡ dG(x; y)) being even. A bipartite graph G is bipanpositionable bipancyclic if G is k-cycle bipanpositionable for every even integer k, 4 ≦ k ≦ jV (G)j. We prove that the hypercube Qn is bipanpositionable bipancyclic if and only if n ≥ 2.
dc.description.sponsorship亞洲大學資訊學院, 台中縣霧峰鄉
dc.format.extent6p.
dc.relation.ispartofseries2007 NCS會議
dc.subjecthypercube
dc.subjecthamiltonian
dc.subjectbipanpositionable
dc.subjectbipancyclic
dc.subject.otherInterconnection Networks
dc.titleBipanpositionable Bipancyclic of Hypercube
分類:2007年 NCS 全國計算機會議

文件中的檔案:
檔案 描述 大小格式 
CE07NCS002007000085.pdf145.4 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。