完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Shih, Yuan-Kang | |
dc.contributor.author | Lin, Cheng-Kuan | |
dc.contributor.author | Tan, Jimmy J. M. | |
dc.date.accessioned | 2009-08-23T04:50:41Z | |
dc.date.accessioned | 2020-05-29T06:39:37Z | - |
dc.date.available | 2009-08-23T04:50:41Z | |
dc.date.available | 2020-05-29T06:39:37Z | - |
dc.date.issued | 2008-07-22T07:28:57Z | |
dc.date.submitted | 2007-12-20 | |
dc.identifier.uri | http://dspace.fcu.edu.tw/handle/2377/10767 | - |
dc.description.abstract | A bipartite graph is bipancyclic if it contains a cycle of every even length from 4 to jV (G)j inclusive. A hamiltonian bipartite graph G is bipanpositionable if, for any two di®erent vertices x and y, there exists a hamiltonian cycle C of G such that dC(x; y) = k for any integer k with dG(x; y)≦ k ≦ jV (G)j=2 and (k ¡ dG(x; y)) being even. A bipartite graph G is k-cycle bipanpositionable if, for any two di®erent vertices x and y, there exists a cycle of G with dC(x; y) = l and jV (C)j = k and for any integer l with dG(x; y)≦l ≦ k/ 2 and (l ¡ dG(x; y)) being even. A bipartite graph G is bipanpositionable bipancyclic if G is k-cycle bipanpositionable for every even integer k, 4 ≦ k ≦ jV (G)j. We prove that the hypercube Qn is bipanpositionable bipancyclic if and only if n ≥ 2. | |
dc.description.sponsorship | 亞洲大學資訊學院, 台中縣霧峰鄉 | |
dc.format.extent | 6p. | |
dc.relation.ispartofseries | 2007 NCS會議 | |
dc.subject | hypercube | |
dc.subject | hamiltonian | |
dc.subject | bipanpositionable | |
dc.subject | bipancyclic | |
dc.subject.other | Interconnection Networks | |
dc.title | Bipanpositionable Bipancyclic of Hypercube | |
分類: | 2007年 NCS 全國計算機會議 |
文件中的檔案:
檔案 | 描述 | 大小 | 格式 | |
---|---|---|---|---|
CE07NCS002007000085.pdf | 145.4 kB | Adobe PDF | 檢視/開啟 |
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。