完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTseng, Chiou-Ting
dc.contributor.authorYang, Chang-Biau
dc.contributor.authorAnn, Hsing-Yen
dc.date.accessioned2009-06-02T07:06:00Z
dc.date.accessioned2020-05-25T06:49:09Z-
dc.date.available2009-06-02T07:06:00Z
dc.date.available2020-05-25T06:49:09Z-
dc.date.issued2009-02-12T03:22:08Z
dc.date.submitted2009-02-11
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/11217-
dc.description.abstractGiven a string S = a1a2a3 ¢ ¢ ¢ an, the longest increasing subsequence (LIS) problem is to ¯nd a subsequence of S such that the subsequence is increasing and its length is maximal. In this paper, we propose and solve two variants of the LIS problem. The ¯rst one is the minimal height LIS where the height means the di®erence between the largest and smallest elements. We propose an algorithm with O(n log n) time and O(n) space to solve it. The second one is the sequence constrained LIS that given a sequence S and a constraint C, we are to ¯nd the LIS of S containing C as its subsequence. We propose an algorithm with O(n log(n + jCj)) time to solve it.
dc.description.sponsorship淡江大學,台北縣
dc.format.extent6p.
dc.relation.ispartofseries2008 ICS會議
dc.subjectbioinformatics
dc.subjectlongest increasing subsequence
dc.subjectheight
dc.subjectconstraint
dc.subject.otherMedical amd Bio-Informatics
dc.titleMinimal Height and Sequence Constrained Longest Increasing Subsequence
分類:2008年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002008000113.pdf125.78 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。