完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTsay, Jyh-Jong
dc.contributor.authorWang, Jing-Doo
dc.date.accessioned2009-08-23T04:47:28Z
dc.date.accessioned2020-05-29T06:16:31Z-
dc.date.available2009-08-23T04:47:28Z
dc.date.available2020-05-29T06:16:31Z-
dc.date.issued2006-10-13T09:42:04Z
dc.date.submitted2001-12-20
dc.identifier.urihttp://dspace.fcu.edu.tw/handle/2377/1265-
dc.description.abstractIn this paper we increase the number of representatives for each class to compensate for the potential weakness of linear classifier which compute one representative for each class. To evaluate the effectiveness of our approach, we compared with linear classifi- er produced by Rocchio algorithm and the k-Nearest Neighbor(kNN) classifier. Experimental results show that our approach improved linear classifier and achieved microaveraged accuracy similar to that of k- Nearest Neighbor(kNN), with much less classi fication time. Furthermore, we could provide a suggestion to reorganize the structure of classes when identify new representatives for linear classifier.
dc.description.sponsorship中國文化大學,台北市
dc.format.extent11p.
dc.format.extent554126 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries2001 NCS會議
dc.subjectInformation Retrieval
dc.subjectLinear Classifier
dc.subjectText Categorization
dc.subject.otherGeneral AI
dc.titleImproving Linear Classifier for Chinese Text Categorization
dc.title.alternative對於中文文件分類線性分類器的改進
分類:2001年 NCS 全國計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ncs002001000042.pdf541.14 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。