完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, Ye-In
dc.contributor.authorHsieh, Yu-Ming
dc.date.accessioned2009-08-23T04:41:26Z
dc.date.accessioned2020-05-25T06:38:41Z-
dc.date.available2009-08-23T04:41:26Z
dc.date.available2020-05-25T06:38:41Z-
dc.date.issued2006-10-16T03:31:04Z
dc.date.submitted2002-12-18
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/1429-
dc.description.abstractDiscovery of association rules is an important problem in the area of data mining. An association rule means that the presence of some items in a transaction will imply the presence of other items in the same transaction. For this problem, how to eÆciently count large itemsets is the major work, where a large itemset is a set of items appearing in a suÆcient number of transactions. In this paper, we propose an eÆcient SETM*-Lmax algorithm to nd maximal large itemsets, based on a high-level set-based approach. The advantage of the set-based approach, like the SETM algorithm, is simple and stable over the range of parameter values. In the SETM*-Lmax algorithm, we use a forward approach to nd all maximal large itemsets from Lk, and the w-itemset is not included in the w- subsets of the j-itemset, where 1 k MaxK, 1 w < j MaxK, LMaxK 6= ; and LMaxK+1 = ;. We conduct several experiments using dierent synthetic relational databases. The simulation results show that the proposed forward approach (SETM*- Lmax) to nd all maximal large itemsets requires shorter time than the backward approach proposed by Agrawal.
dc.description.sponsorship東華大學,花蓮縣
dc.format.extent21p.
dc.format.extent262184 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries2002 ICS會議
dc.subjectassociation rules
dc.subjectdata mining
dc.subjectknowledge discovery
dc.subjectrelational databases
dc.subjecttransactions
dc.titleSETM*-Lmax: An EÆcient Set-Based Approach to Find Maximal Large Itemsets
分類:2002年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002002000220.PDF256.04 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。