完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Hung, Ruo-Wei | |
dc.contributor.author | Chang, Maw-Shang | |
dc.date.accessioned | 2009-08-23T04:41:13Z | |
dc.date.accessioned | 2020-05-25T06:37:45Z | - |
dc.date.available | 2009-08-23T04:41:13Z | |
dc.date.available | 2020-05-25T06:37:45Z | - |
dc.date.issued | 2006-10-16T03:55:23Z | |
dc.date.submitted | 2002-12-18 | |
dc.identifier.uri | http://dspace.lib.fcu.edu.tw/handle/2377/1497 | - |
dc.description.abstract | A Hamiltonian path of a graph G with respect to a subset T of vertices, |T | ≤ 2, is a Hamiltonian path P of G such that vertices in T are end vertices of P. Given a graph G and a subset T of vertices, the constrained Hamiltonian path problem involves testing whether a Hamiltonian path of G with respect to T exists. Hamiltonian path problem is the special constrained Hamiltonian path problem where T is empty. A connected graph G = (V,E) is distance-hereditary if every two vertices in V have the same distance in every connected induced subgraph of G containing them. This paper presents linear time algorithms for the constrained Hamiltonian path problems on distance-hereditary graphs whereas the best previous known algorithm for Hamiltonian path problem on distance-hereditary graphs runs in O(|V |5) time. | |
dc.description.sponsorship | 東華大學,花蓮縣 | |
dc.format.extent | 19p. | |
dc.format.extent | 247471 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | zh_TW | |
dc.relation.ispartofseries | 2002 ICS會議 | |
dc.subject | graph algorithms | |
dc.subject | Hamiltonian path problem | |
dc.subject | distance-hereditary graphs | |
dc.subject | cographs | |
dc.subject | AMS(MOS) subject classifications | |
dc.subject | 05C85 | |
dc.subject | 68Q20 | |
dc.subject | 68Q25 | |
dc.subject | 68R10 | |
dc.subject | 68W25 | |
dc.title | Hamiltonian Path Problems on Distance-Hereditary Graphs | |
分類: | 2002年 ICS 國際計算機會議 |
文件中的檔案:
檔案 | 描述 | 大小 | 格式 | |
---|---|---|---|---|
ce07ics002002000144.PDF | 241.67 kB | Adobe PDF | 檢視/開啟 |
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。