完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Chi-Yuan
dc.contributor.authorChen, Chin-Hsing
dc.date.accessioned2009-08-23T04:46:37Z
dc.date.accessioned2020-05-29T06:16:33Z-
dc.date.available2009-08-23T04:46:37Z
dc.date.available2020-05-29T06:16:33Z-
dc.date.issued2006-10-17T07:04:03Z
dc.date.submitted2001-12-20
dc.identifier.urihttp://dspace.fcu.edu.tw/handle/2377/1764-
dc.description.abstractThe wavelet transform has recently emerged as a powerful tool for image compression. In this paper, the Grey theory is applied to a two-layer modified Competitive Learning Network (GCLN) to generate optimal solutions for VQ. In accordance with the degree of similarity measures between training vectors and codevectors, the grey relational analysis is used to measure the relationship degree among them. The input image is first decomposed into four subbands in the 1-level wavelet transform. Then the corresponding transformed coefficients are trained using GCLN to form individual codebooks for each subband. The compression performances using the proposed approach are compared with GCLN and the conventional vector quantization LBG method. Experimental results show that promising performance can be obtained using the GCLN with wavelet decomposition.
dc.description.sponsorship中國文化大學,台北市
dc.format.extent8p.
dc.format.extent203252 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries2001 NCS會議
dc.subjectImage compression
dc.subjectCompetitive learning network
dc.subjectGrey theory
dc.subjectWavelet transform
dc.subject.otherMultimedia Compression Techniques
dc.titleImage Compression Using Grey-Based Neural Networks In the Wavelet Transform Domain
分類:2001年 NCS 全國計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ncs002001000065.pdf198.49 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。