完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Chenn-Jung
dc.contributor.authorLiao, Wei-Chen
dc.date.accessioned2009-08-23T04:41:26Z
dc.date.accessioned2020-05-25T06:38:40Z-
dc.date.available2009-08-23T04:41:26Z
dc.date.available2020-05-25T06:38:40Z-
dc.date.issued2006-10-23T15:46:50Z
dc.date.submitted2002-12-18
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/2245-
dc.description.abstractAccurate diagnosis and classification is the key issue for the optimal treatment of cancer patients. Several studies demonstrate that cancer classification can be estimated with high accuracy, sensitivity and specificity from microarray-based gene expression profiling using artificial neural networks (ANN). In this paper, a comprehensive study was undertaken to investigate the potential value of other neural networks for the discrimination of acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). Probabilistic neural networks (PNN), multilayer perceptrons (MLP) and the learning vector quantization network (LVQ) were applied for this purpose. The best results were obtained by PNN, followed by MLP networks and LVQ. PNN classifier yields 100% recognition accuracy and is well suited for the AAL/AML classification in cancer treatment. This study presents the capabilities of PNN, and also indicates that PNN should be evaluated in a larger prospective study. Our future work will focus on applying the gene selection method and the PNN network on other dataset to observe the generality of this strategy.
dc.description.sponsorship東華大學,花蓮縣
dc.format.extent14p.
dc.format.extent212931 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries2002 ICS會議
dc.subjectProbabilistic neural network
dc.subjectmultilayer perceptron
dc.subjectlearning vector quantization
dc.subjectfeature extraction
dc.subjectgene expression data
dc.subjectclass prediction
dc.subjectacute leukemia
dc.titleComparative Study of Three Neural Approaches in Class Prediction of Cancer
分類:2002年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002002000316.PDF207.94 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。