完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChien, Been-Chian
dc.contributor.authorYang, Jui-Hsiang
dc.date.accessioned2009-08-23T04:41:08Z
dc.date.accessioned2020-05-25T06:37:40Z-
dc.date.available2009-08-23T04:41:08Z
dc.date.available2020-05-25T06:37:40Z-
dc.date.issued2006-10-24
dc.date.submitted2002-12-18
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/2255-
dc.description.abstractClassification is one of the important research topics in knowledge discovery and machine learning. A new classifier learning method using genetic programming has been developed for classifying numerical data recently. However, it is difficult for a function-based classifier to classify general nominal data, because nominal data may have possible large distinct values with no ordering values. In this paper, we present a new scheme based on rough set theory and genetic programming to learn a classifier from the data with both nominal and numerical attributes. The proposed scheme first transforms the nominal data into numerical values by rough membership functions. The classification functions then can be generated by genetic programming easily. We use several URI data sets to show the performance of the proposed scheme and make comparisons with other methods.
dc.description.sponsorship東華大學,花蓮縣
dc.format.extent25p.
dc.format.extent236080 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries2002 ICS會議
dc.subjectKnowledge discovery
dc.subjectMachine learning
dc.subjectGenetic programming
dc.subjectClassification
dc.subjectRough set
dc.subject.otherArtificial Intelligence
dc.titleA Classifier Learning Scheme based on Rough Membership and Genetic Programming
分類:2002年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002002000339.PDF230.55 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。