完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, Chi-Hao
dc.contributor.authorChen, Shyi-Ming
dc.date.accessioned2009-06-02T06:22:05Z
dc.date.accessioned2020-05-25T06:37:45Z-
dc.date.available2009-06-02T06:22:05Z
dc.date.available2020-05-25T06:37:45Z-
dc.date.issued2006-10-26T01:36:41Z
dc.date.submitted2000-12-08
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/2584-
dc.description.abstractTo develop a fuzzy system, the most important task is to derive a set of fuzzy rules from a set of training data. In recent years, many methods have been developed to automatically derive fuzzy rules from training instances. In this paper,we present a new method to generate fuzzy rules from numerical data based on the exclusion of attribute terms to deal with the Iris data classification problem. The experimental results show that the proposed method can get a higher classification accuracy rate than the existing methods.
dc.description.sponsorship中正大學,嘉義縣
dc.format.extent8p.
dc.format.extent237579 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries2000 ICS會議
dc.subject.otherData Mining & Knowledge-Based Systems
dc.titleA New Method to Generate Fuzzy Rules from Numerical Data based on the Exclusion of Attribute Terms
分類:2000年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002000000035.pdf232.01 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。