完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Huang, Wen-Tzeng | |
dc.contributor.author | Tan, J.M. | |
dc.contributor.author | Hsu, Lih-Hsing | |
dc.date.accessioned | 2009-06-02T07:21:44Z | |
dc.date.accessioned | 2020-05-29T06:19:40Z | - |
dc.date.available | 2009-06-02T07:21:44Z | |
dc.date.available | 2020-05-29T06:19:40Z | - |
dc.date.issued | 2006-10-30T01:18:04Z | |
dc.date.submitted | 1999-12-20 | |
dc.identifier.uri | http://dspace.fcu.edu.tw/handle/2377/2801 | - |
dc.description.abstract | An n-dimensional crossed cube, CQn, is a variation from hypercube. In this paper, we prove that CQn is (n-2)-hamiltonian and (n-3)-hamiltonian connected. That is, a ring of length 2n - fv can be embedded in a faulty CQn with fv faulty nodes and fe faulty edges, where fv + fe ≦ n-2 and n ≧ 3. In other words, we show that the faulty CQn is still hamiltonian with n-2 faults. In addition, we also prove that there exists a hamiltonian path between any pair of vertices in a faulty CQn with n-3 faults. A recent result has shown that a ring of length 2n - 2fv can embedded in a faulty Hypercube, if fv + fe ≦ n-1 and n ≧ 4, with a few additional constrains [10]. Our results, in comparison to Hypercube, show that longer rings can be embedded in CQn without additional constrains. | |
dc.description.sponsorship | 淡江大學, 台北縣 | |
dc.format.extent | 6p. | |
dc.format.extent | 530325 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | zh_TW | |
dc.relation.ispartofseries | 1999 NCS會議 | |
dc.subject | crossed cube | |
dc.subject | fault tolerant | |
dc.subject | hamiltonian | |
dc.subject | hamiltonian connected | |
dc.subject | hypercube | |
dc.subject.other | Interconnection Networks and Combinatorics | |
dc.title | Fault-free Ring Embedding in Faulty Crossed Cubes | |
分類: | 1999年 NCS 全國計算機會議 |
文件中的檔案:
檔案 | 描述 | 大小 | 格式 | |
---|---|---|---|---|
ce07ncs001999000057.pdf | 517.9 kB | Adobe PDF | 檢視/開啟 |
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。