題名: A PIP-based Evolutionary Approach for Time Series Segmentation and Pattern Discovery
作者: Yu, Hsieh-Hui Jr
Tseng, Vincent S. Jr
Chen, Chun-Hao Jr
Hong, Tzung-Pei Jr
關鍵字: genetic algorithm
segmentation
time series
clustering
perceptually important points
期刊名/會議名稱: 2010 ICS會議
摘要: In the past, we proposed a time series segmentation approach by combining the clustering technique, the Discrete Wavelet Transformation (DWT) and the genetic algorithm to automatically find segments and patterns from a time series. In this paper, we propose a PIP-based evolutionary approach, which uses Perceptually Important Points (PIP) instead of DWT, to effectively adjust the length of subsequences for finding appropriate segments and patterns and avoiding some problems in the previous approach. For achieving the purpose, the enhanced suitability factor in the fitness function which is modified from the previous approach, is designed. Experimental results on a real financial dataset also show the effectiveness of the proposed approach.
日期: 2011-01-26T01:02:54Z
分類:2010年 ICS 國際計算機會議(如需查看全文,請連結至IEEE Xplore網站)

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。