完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChung, Wei-Chun Jr
dc.contributor.authorYang, Chang-Biau Jr
dc.contributor.authorHor, Chiou-Yi Jr
dc.date.accessioned2011-03-06T19:34:13Z
dc.date.accessioned2020-05-18T03:22:41Z-
dc.date.available2011-03-06T19:34:13Z
dc.date.available2020-05-18T03:22:41Z-
dc.date.issued2011-03-06T19:34:13Z
dc.date.submitted2009-11-28
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/30048-
dc.description.abstractFor solving the problem of cysteine state classification, we propose a 2-stage prediction method. In the first stage, we invoke the SVM to get the initial prediction. The features involved in SVM classification include the local profile PSSM, order of cysteines with the normalized protein length, physiochemical properties and structure probabilities. Then, in the second stage, we propose a tuning method for refining the predicted result obtained by SVM. We validate it with a dataset derived from PDB, which contains 969 non-homologous proteins and 4136 cysteines. We adopt a 20-fold crossvalidation test and achieve 90.7% accuracy and 0.79 Matthews correlation coefficient. With our tuning method, we can improve the performance from the initial prediction by about 20% in the protein-based accuracy and 5% in the cysteine-based accuracy. The prediction accuracies are better than the previous works.
dc.description.sponsorshipNational Taipei University,Taipei
dc.format.extent12p.
dc.relation.ispartofseriesNCS 2009
dc.subjectbioinformatics
dc.subjectSVM
dc.subjectfeature selection
dc.subjectprotein
dc.subjectcysteine
dc.subjectdisulfide bond
dc.subject.otherWorkshop on Algorithms and Bioinformatics
dc.titleAn Effective Tuning Method for Cysteine State Classification
分類:2009年 NCS 全國計算機會議

文件中的檔案:
檔案 描述 大小格式 
AB 6-1.pdf113.62 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。