題名: | Cross-Site Scripting Attack Detection Based on Hidden Markov Model |
作者: | Wu, Yeng-Ting Jr Lin, Shiou-Jing Jr Liu, En-Si Jr Pao, Hsing-Kuo Jr Mao, Ching-Hao Jr Lee, Hahn-Ming Jr |
關鍵字: | Cross site script hidden Markov model web security token sequence |
期刊名/會議名稱: | NCS 2009 |
摘要: | Cross-Site Scripting (XSS) is a well-known type of web vulnerabilities which allows attackers to in-ject the malicious scripts or codes to compromise the web application services. Based on the characteristics of client side script language, the attackers can launch XSS attack by a single HTTP request to a website easily. Therefore, detection of XSS is a critical issue for all website manag-ers. In this paper, based on a machine learning approach, we propose a new method to detect XSS attacks on a web server. We preprocess an HTTP request to a token se-quence, and utilize Hidden Markov Model to determine whether an XSS attack exists in the HTTP request. By filtering HTTP requests on the server side, our approach can label each HTTP request whether it is an XSS attack or not. Moreover, apart from other related methods, ours takes the proximity into consideration. The pro-posed system performs well with high accuracy rate on a real data set collected from a private telecom company. |
日期: | 2011-03-25T00:45:11Z |
分類: | 2009年 NCS 全國計算機會議 |
文件中的檔案:
檔案 | 描述 | 大小 | 格式 | |
---|---|---|---|---|
CI0801.pdf | 379.03 kB | Adobe PDF | 檢視/開啟 |
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。