完整後設資料紀錄
DC 欄位語言
dc.contributor.authorOuyang, Yen-Cheih
dc.contributor.authorSun, Cheng-Lun
dc.contributor.authorLian, Wei-Shi
dc.date.accessioned2009-06-02T07:20:39Z
dc.date.accessioned2020-05-29T06:18:12Z-
dc.date.available2009-06-02T07:20:39Z
dc.date.available2020-05-29T06:18:12Z-
dc.date.issued2006-11-13T02:11:00Z
dc.date.submitted1999-12-20
dc.identifier.urihttp://dspace.fcu.edu.tw/handle/2377/3155-
dc.description.abstractThis work presents a novel feedback rate regulator using the multiple leaky bucket (MLB) for VBR self-similar traffic that is based on the traffic load prediction by time-delayed neural networks in ATM networks. In contrast to the conventional leaky bucket (LB), the leak rate and buffer capacity of all LBs are shared in the same virtual path to more effectively utilize network resources. In the MLB mechanism, the leak rate and buffer capacity of each LB can be dynamically adjusted based on the buffer occupancy. A finite-duration impulse response (FIR) multilayer neural network is used to predict the incoming traffic load and pass the information to the feedback rate regulator. In addition, ten real world MPEG1 and ten synthesized traffic traces are used to validate the performance of the MLB and the MLB with FIR prediction mechanism. Simulation results demonstrate that the cell loss rate using MLB and MLB with FIR has a three to more than ten thousand time improvement over the conventional leaky bucket method.
dc.description.sponsorship淡江大學, 台北縣
dc.format.extent8p.
dc.format.extent614758 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries1999 NCS會議
dc.subjectSelf-similar
dc.subjectATM Networks
dc.subjectMultiple Leaky Bucket
dc.subjectNeural Networks
dc.subjectTraffic Control
dc.subject.otherHigh Speed Networks
dc.titleEffective Flow Control on Self-similar Traffic in ATM Networks An FIR Neural Network Approach
分類:1999年 NCS 全國計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ncs001999000101.pdf600.35 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。