題名: | Effective Flow Control on Self-similar Traffic in ATM Networks An FIR Neural Network Approach |
作者: | Ouyang, Yen-Cheih Sun, Cheng-Lun Lian, Wei-Shi |
關鍵字: | Self-similar ATM Networks Multiple Leaky Bucket Neural Networks Traffic Control |
期刊名/會議名稱: | 1999 NCS會議 |
摘要: | This work presents a novel feedback rate regulator using the multiple leaky bucket (MLB) for VBR self-similar traffic that is based on the traffic load prediction by time-delayed neural networks in ATM networks. In contrast to the conventional leaky bucket (LB), the leak rate and buffer capacity of all LBs are shared in the same virtual path to more effectively utilize network resources. In the MLB mechanism, the leak rate and buffer capacity of each LB can be dynamically adjusted based on the buffer occupancy. A finite-duration impulse response (FIR) multilayer neural network is used to predict the incoming traffic load and pass the information to the feedback rate regulator. In addition, ten real world MPEG1 and ten synthesized traffic traces are used to validate the performance of the MLB and the MLB with FIR prediction mechanism. Simulation results demonstrate that the cell loss rate using MLB and MLB with FIR has a three to more than ten thousand time improvement over the conventional leaky bucket method. |
日期: | 2006-11-13T02:11:00Z |
分類: | 1999年 NCS 全國計算機會議 |
文件中的檔案:
檔案 | 描述 | 大小 | 格式 | |
---|---|---|---|---|
ce07ncs001999000101.pdf | 600.35 kB | Adobe PDF | 檢視/開啟 |
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。