完整後設資料紀錄
DC 欄位語言
dc.contributor.authorSheu, Jyh-Jian
dc.contributor.authorTan, J.M.
dc.contributor.authorLin, Men-Yang
dc.date.accessioned2009-06-02T07:20:35Z
dc.date.accessioned2020-05-29T06:17:42Z-
dc.date.available2009-06-02T07:20:35Z
dc.date.available2020-05-29T06:17:42Z-
dc.date.issued2006-11-13T02:51:42Z
dc.date.submitted1999-12-20
dc.identifier.urihttp://dspace.fcu.edu.tw/handle/2377/3179-
dc.description.abstractThe ring structure is important for distributed computing, and it is useful to construct a hamiltonian cycle or rings of various length in the network. Kanevsky and Feng [3] proved that all cycles of length l where 6≦1≦n!-2 or l =n! can be embedded in the pancake graphs Gn. Later, Senoussi and Lavault [9] presented the embedding of ring of length l, 3≦l≦n!, with dilation 2 in the pancake graphs Gn. These results prompt us to explore the possibility of embedding a cycle of length n! - 1 into Gn, and to establish some topological properties of the pancake graphs. In this paper, we prove that there exists a hamiltonian path joining any two nodes of the pancake graph Gn. And we show that the pancake graph still has a hamiltonian cycle in the presence of one faulty node. As a consequence, a cycle of length n! - 1 can be embedded in Gn. And we expand Kanevsky and Feng's result as follows: A cycle of length l can be embedded in the pancake graph Gn, n≧4, if and only if a≦l≦n!.
dc.description.sponsorship淡江大學, 台北縣
dc.format.extent6p.
dc.format.extent461561 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries1999 NCS會議
dc.subjectpancake graph
dc.subjectstar graph
dc.subjectsault tolerant
dc.subjecthamiltonian
dc.subjecthamiltonian connected
dc.subject.otherInterconnection Networks
dc.titleOn the cycle embedding of pancake graphs
分類:1999年 NCS 全國計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ncs001999000212.pdf457.33 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。