完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Ching, Yu-Tai | |
dc.date.accessioned | 2009-06-02T06:19:06Z | |
dc.date.accessioned | 2020-05-25T06:37:26Z | - |
dc.date.available | 2009-06-02T06:19:06Z | |
dc.date.available | 2020-05-25T06:37:26Z | - |
dc.date.issued | 2006-11-17T06:22:25Z | |
dc.date.submitted | 2000-12-08 | |
dc.identifier.uri | http://dspace.lib.fcu.edu.tw/handle/2377/3253 | - |
dc.description.abstract | A contour of n vertices is a polygonal path which is represented using a sequence of ver- tices P = < v0; v1; : : : ; vn >; v0 = vn; where vi; v(i+1) is an edges on the path. A contour approximation problem is to substitute the contour P by another simpler contour Q while maintaining the deviation between P and Q. In this article, we present a result that we can nd a Q with the least number of edges for a given error bound. | |
dc.description.sponsorship | 中正大學,嘉義縣 | |
dc.format.extent | 5p. | |
dc.format.extent | 202675 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | zh_TW | |
dc.relation.ispartofseries | 2000 ICS會議 | |
dc.subject | Polygon approximation | |
dc.subject | level of detail | |
dc.subject | dynamic programming | |
dc.subject.other | LOD | |
dc.title | Optimal Contour Approximation and Applications | |
分類: | 2000年 ICS 國際計算機會議 |
文件中的檔案:
檔案 | 描述 | 大小 | 格式 | |
---|---|---|---|---|
ce07ics002000000231.pdf | 197.92 kB | Adobe PDF | 檢視/開啟 |
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。