題名: | Toward the Best Feature Model for Network Intrusion Detection Using Stepwise Regression and Support Vector Machine |
作者: | Wong, Wai-Tak Huang, Wen-Cheng |
期刊名/會議名稱: | 2006 ICS會議 |
摘要: | A lightweight network intrusion detection system is more efficient and effective for the real world requirement. Higher performance may result if the insignificant and/or useless features can be eliminated. Stepwise Regression can identify the best feature model from the examined features. In this paper Stepwise Regression and Support Vector Machine are combined to detect network intrusion. Empirical result indicates that using the best feature model obtained from the Stepwise Regression can get nearly the same performance as the full feature set. A comparative study of using different feature selection methods is also shown to prove the usefulness of our approach. |
日期: | 2007-01-29T08:17:38Z |
分類: | 2006年 ICS 國際計算機會議 |
文件中的檔案:
檔案 | 描述 | 大小 | 格式 | |
---|---|---|---|---|
ce07ics002006000141.pdf | 645.1 kB | Adobe PDF | 檢視/開啟 |
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。