完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, T. B.
dc.contributor.authorChiang, H.Y.
dc.contributor.authorLu, H .H. S
dc.date.accessioned2009-08-23T04:42:30Z
dc.date.accessioned2020-05-25T06:53:13Z-
dc.date.available2009-08-23T04:42:30Z
dc.date.available2020-05-25T06:53:13Z-
dc.date.issued2007-02-01T06:10:05Z
dc.date.submitted2006-12-04
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/3687-
dc.description.abstractThe segmentation of 3D microPET image is one of the most important issues in tracing and recognizing the gene activity in vivo. In order to discover and recover the dynamic activity of gene expression, reconstruction techniques with higher precision and fewer artifacts are necessary. To improve the resolution on microPET images, the maximum likelihood estimate (MLE) by the EM algorithm is applied. In addition, advanced statistical technique based on the mixture model is developed to segment the reconstructed images. In this study, the new proposed method is evaluated with simulation and empirical studies. The performance shows that the proposed method is feasibly promising.
dc.description.sponsorship元智大學,中壢市
dc.format.extent6p.
dc.format.extent1563055 bytes
dc.format.mimetypeapplication/pdf
dc.language.isozh_TW
dc.relation.ispartofseries2006 ICS會議
dc.subjectFBP
dc.subjectGaussian mixture model
dc.subjectMLE-EM
dc.subjectFWHM
dc.subjectKernel density estimation
dc.subject.otherMedical Image Processing
dc.titleSegmentation of 3D MicroPET Images Using The Mixture Method
分類:2006年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002006000222.pdf1.53 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。