題名: Improving Linear Classifier for Chinese Text Categorization
其他題名: 對於中文文件分類線性分類器的改進
作者: Tsay, Jyh-Jong
Wang, Jing-Doo
關鍵字: Information Retrieval
Linear Classifier
Text Categorization
期刊名/會議名稱: 2001 NCS會議
摘要: In this paper we increase the number of representatives for each class to compensate for the potential weakness of linear classifier which compute one representative for each class. To evaluate the effectiveness of our approach, we compared with linear classifi- er produced by Rocchio algorithm and the k-Nearest Neighbor(kNN) classifier. Experimental results show that our approach improved linear classifier and achieved microaveraged accuracy similar to that of k- Nearest Neighbor(kNN), with much less classi fication time. Furthermore, we could provide a suggestion to reorganize the structure of classes when identify new representatives for linear classifier.
日期: 2006-10-13T09:42:04Z
分類:2001年 NCS 全國計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ncs002001000042.pdf541.14 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。