題名: SETM*-Lmax: An EÆcient Set-Based Approach to Find Maximal Large Itemsets
作者: Chang, Ye-In
Hsieh, Yu-Ming
關鍵字: association rules
data mining
knowledge discovery
relational databases
transactions
期刊名/會議名稱: 2002 ICS會議
摘要: Discovery of association rules is an important problem in the area of data mining. An association rule means that the presence of some items in a transaction will imply the presence of other items in the same transaction. For this problem, how to eÆciently count large itemsets is the major work, where a large itemset is a set of items appearing in a suÆcient number of transactions. In this paper, we propose an eÆcient SETM*-Lmax algorithm to nd maximal large itemsets, based on a high-level set-based approach. The advantage of the set-based approach, like the SETM algorithm, is simple and stable over the range of parameter values. In the SETM*-Lmax algorithm, we use a forward approach to nd all maximal large itemsets from Lk, and the w-itemset is not included in the w- subsets of the j-itemset, where 1 k MaxK, 1 w < j MaxK, LMaxK 6= ; and LMaxK+1 = ;. We conduct several experiments using dierent synthetic relational databases. The simulation results show that the proposed forward approach (SETM*- Lmax) to nd all maximal large itemsets requires shorter time than the backward approach proposed by Agrawal.
日期: 2006-10-16T03:31:04Z
分類:2002年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002002000220.PDF256.04 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。