題名: | SETM*-Lmax: An EÆcient Set-Based Approach to Find Maximal Large Itemsets |
作者: | Chang, Ye-In Hsieh, Yu-Ming |
關鍵字: | association rules data mining knowledge discovery relational databases transactions |
期刊名/會議名稱: | 2002 ICS會議 |
摘要: | Discovery of association rules is an important problem in the area of data mining. An association rule means that the presence of some items in a transaction will imply the presence of other items in the same transaction. For this problem, how to eÆciently count large itemsets is the major work, where a large itemset is a set of items appearing in a suÆcient number of transactions. In this paper, we propose an eÆcient SETM*-Lmax algorithm to nd maximal large itemsets, based on a high-level set-based approach. The advantage of the set-based approach, like the SETM algorithm, is simple and stable over the range of parameter values. In the SETM*-Lmax algorithm, we use a forward approach to nd all maximal large itemsets from Lk, and the w-itemset is not included in the w- subsets of the j-itemset, where 1 k MaxK, 1 w < j MaxK, LMaxK 6= ; and LMaxK+1 = ;. We conduct several experiments using dierent synthetic relational databases. The simulation results show that the proposed forward approach (SETM*- Lmax) to nd all maximal large itemsets requires shorter time than the backward approach proposed by Agrawal. |
日期: | 2006-10-16T03:31:04Z |
分類: | 2002年 ICS 國際計算機會議 |
文件中的檔案:
檔案 | 描述 | 大小 | 格式 | |
---|---|---|---|---|
ce07ics002002000220.PDF | 256.04 kB | Adobe PDF | 檢視/開啟 |
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。