題名: | Hamiltonian Path Problems on Distance-Hereditary Graphs |
作者: | Hung, Ruo-Wei Chang, Maw-Shang |
關鍵字: | graph algorithms Hamiltonian path problem distance-hereditary graphs cographs AMS(MOS) subject classifications 05C85 68Q20 68Q25 68R10 68W25 |
期刊名/會議名稱: | 2002 ICS會議 |
摘要: | A Hamiltonian path of a graph G with respect to a subset T of vertices, |T | ≤ 2, is a Hamiltonian path P of G such that vertices in T are end vertices of P. Given a graph G and a subset T of vertices, the constrained Hamiltonian path problem involves testing whether a Hamiltonian path of G with respect to T exists. Hamiltonian path problem is the special constrained Hamiltonian path problem where T is empty. A connected graph G = (V,E) is distance-hereditary if every two vertices in V have the same distance in every connected induced subgraph of G containing them. This paper presents linear time algorithms for the constrained Hamiltonian path problems on distance-hereditary graphs whereas the best previous known algorithm for Hamiltonian path problem on distance-hereditary graphs runs in O(|V |5) time. |
日期: | 2006-10-16T03:55:23Z |
分類: | 2002年 ICS 國際計算機會議 |
文件中的檔案:
檔案 | 描述 | 大小 | 格式 | |
---|---|---|---|---|
ce07ics002002000144.PDF | 241.67 kB | Adobe PDF | 檢視/開啟 |
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。