題名: Hamiltonian Path Problems on Distance-Hereditary Graphs
作者: Hung, Ruo-Wei
Chang, Maw-Shang
關鍵字: graph algorithms
Hamiltonian path problem
distance-hereditary graphs
cographs
AMS(MOS) subject classifications
05C85
68Q20
68Q25
68R10
68W25
期刊名/會議名稱: 2002 ICS會議
摘要: A Hamiltonian path of a graph G with respect to a subset T of vertices, |T | ≤ 2, is a Hamiltonian path P of G such that vertices in T are end vertices of P. Given a graph G and a subset T of vertices, the constrained Hamiltonian path problem involves testing whether a Hamiltonian path of G with respect to T exists. Hamiltonian path problem is the special constrained Hamiltonian path problem where T is empty. A connected graph G = (V,E) is distance-hereditary if every two vertices in V have the same distance in every connected induced subgraph of G containing them. This paper presents linear time algorithms for the constrained Hamiltonian path problems on distance-hereditary graphs whereas the best previous known algorithm for Hamiltonian path problem on distance-hereditary graphs runs in O(|V |5) time.
日期: 2006-10-16T03:55:23Z
分類:2002年 ICS 國際計算機會議

文件中的檔案:
檔案 描述 大小格式 
ce07ics002002000144.PDF241.67 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。